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Federated Learning is increasingly attractive, however as
thenumberof training samplesona singledevice is too small
and the training tasks of the devices are different, it faces
the Few-Shot Multi-Task Learning problem. Moreover, fed-
erated learning frameworks are usually vulnerable to mali-
cious attacks of the central server and diverse clients. To
address these problems, we propose a Decentralized Fed-
erated Meta-Learning Framework for few-shot multi-task
learning (DFMLF). InDFMLF, thedevices take the rapid adap-
tationasobjectiveand learn themeta-knowledge sharedby
tasks to deal with the few-shot multi-task problem. In ad-
dition, DFMLF conducts cross-validation and secure aggre-
gation mechanism by a small number of committee nodes,
which not only eliminates the central server to avoid the
security risks brought by the malicious central server, but
also avoids the attack ofmalicious devices. Moreover, to ad-
dress the extra communication cost brought by the commit-
tee strategy,weproposea communication-efficientmethod
to make the training and aggregation carried out in paral-
lel. We conduct extensive experiments based on real-world
datasets, and the experimental results demonstrate the ef-

Abbreviations: Decentralized FederatedMeta-Learning Framework for Few-ShotMulti-Task Learning.
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fectiveness, robustness, and efficiency of our framework.
K E YWORD S
Federated Learning, Meta-Learning, Committee, Few-Shot,
Multi-Task

1 | INTRODUCTION
In recent years, machine learning has penetrated all aspects of our lives. A practical and deployable machine learning
algorithm often requires a huge amount of high-quality data for training. However, in many real scenes, the data are
scattered in different places. For example, in mobile computing, smart mobile devices such as smartphones, mobile
sensors, wearable devices, and autonomous vehicles are distributed in different places and generate a tremendous
amount of valuable data. The conventional machine learningmethods usually require integrating the distributed data
into a central server. However, due to the consideration of data security and user privacy, this is usually impractical,
which leads to the problem of data island [1].

Recently, federated learning [2, 3] has been proposed to solve the data island problem, in which the devices can
train a shared global model collaboratively without exposing their data to others, and the performance of the global
model is very close to that of the model based on the fused data. Federated Averaging algorithm (FedAvg) [4] is the
most widely recognized federated learningmethod, which usually has one central server andmultiple clients, and con-
tains three steps in each communication iteration: (1) the server sends the current global model to some selected
clients; (2) the selected clients receive the global model, perform training based on their local data, and then send the
updated local models to the server; (3) the server aggregates the uploaded local models of clients to generate a new
global model by averaging. The process is repeated until it converges. Federated learning provides globally model
training while ensuring privacy, thus is increasingly attractive.

However, federated learning onmobile devices is not a trivial task. There are two significant challenges as follows:
a) Few-ShotMulti-Task problem. FedAvg assumes that a single client already has a certain amount of training

data, and the client’s motivation is to reduce the generalization error of local data with the help of other clients. How-
ever, this assumptiondoesnothold inmany real cases. Thedata generatedbyeachdevice is related to theenvironment
of the device and the usage habits of users on the device, which leads to the limitation and one-sidedness of the data.
Consider an image classification setting shown in Fig. 1: the mobile smartphone A needs to classify house and horse,
while mobile smartphone Bwants to classify bird and dog, and the tasks of other smartphones are also different. Each
of these smartphones has only a few shots of pictures andwants to outputmulti-category prediction results. There are
two major differences between this setting and that of FedAvg: (1) The number of training samples on a single device
is too small to train amodel, also as known as the Few-Shot Learning problem; (2) The training tasks of devices vary, as
known as Multi-Task Learning problem. If the training samples of all devices are gathered together, the target size of
themodel will suffer from the curse of dimensionality.

b)Credibility and Security issues.Conventional distributed learningmethods usually assume that thedevices are
under the centralized control of a trusted central server, and all clients will execute in strict accordance with the in-
structions of the server. However, in federated learning, the devices have absolute control over their data and be-
havior due to autonomy and intelligence. What they expect is to maximize their own interests instead of the global
interests. Due to selfishness, the devices may not be able to elect a trusted third-party that everyone is satisfied with
as the central server, or they may launch malicious attacks by fabricating model parameters to bias the model toward
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a certain device. Therefore, it is reasonable and necessary to consider themutual distrust between these devices. Lyu
et al. [5] found that there are many security risks in the distributed scene of federated learning. For example, mali-
cious attackers can use certain security vulnerabilities in federated learning architecture to damage the model effect.
Besides that, as the central server is prone to a single point of failure or is not neutral (more inclined to some devices),
that may greatly affect devices’ willingness to participate [6].

Meta-learning is a natural choice tohandle the few-shotmulti-task problem. Sincehumanbeings haveprior knowl-
edgeand theability to rapidly adapt, theyneedonly a fewsamples for each categoryof images toaccurately classify the
unknown samples. Based on this intuitive idea, some researchers put forward meta-learning [7, 8]. In meta-learning,
prior knowledge is called meta-knowledge, and rapid adaptation is the goal of model optimization. The motivation of
meta-learning is no longer to optimize the loss of an individual task but to learn how to learn. That is to say, meta-
learning can quickly get a model with better performance for unknown tasks based on prior knowledge and a few
shots of samples. Different from current Federated Meta-Learning works that generate multiple models to solve the
personalization problem, we aim to train one globalmodel that can be applied tomultiple tasks. In this paper, we incor-
porate meta-learning into the federated learning framework, and conduct a federated meta-learning framework for
the few-shot multi-task problem in a distributed setting, expecting to obtain an effectively shared global model which
can rapidly adapt to different tasks.

The current federated learning frameworks are usually vulnerable to malicious attacks, from both clients and
servers. The current works can only solve one of these two problems. The works that consider not only the trust-
worthiness of the server but also the security problemof the clients at the same time are very limited. Considering the
credibility and security issues, we propose a decentralized federatedMeta-Learning framework. In particular, consid-
ering that there is no trusted thirdparty,wedirectly eliminate the central server in the conventional federated learning
architecture and allocate the responsibilities of the central server to some elected committee nodes. Besides, consid-
ering the existence of malicious devices, the committee nodes conduct cross-validation and secure aggregationmech-
anism to avoid the security risks brought by them. Since communication overhead is a major bottleneck in federated
learning, and the committee strategy will produce additional communication overhead, we provide a comprehensive
analysis of the time complexity of the proposed framework, and propose a feasible scheme to reduce communication
overhead.

From the perspective of the training framework, the comparison between DFMLF and other frameworks is listed
in Table 1, where "-"means that there is no such problem, "7"means that the framework can not solve the problem, and
"3" means that the framework can effectively solve the corresponding problem.

TABLE 1 The functional comparison betweenDFMLF and other frameworks.
Frameworks data privacy malicious device no-trust server few-shot multi-task
Pre-train [9] - - - 7

Centralized [9] 7 - - 3

FedAvg [4] 3 7 7 7

Fed-Meta [10] 3 7 7 3

DFMLF 3 3 3 3

The contributions of this paper are summarized as follows:

• We incorporate meta-learning into the federated learning framework to solve the few-shot multi-task problem
of mobile devices. Compared with the conventional meta-learning, our framework enables decentralized mobile
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F IGURE 1 The distributed few-shot multi-task learning problem, each device has a few shots of data, and the
training tasks of devices are different, the target dimension of themodel is too tremendous to train.

devices to train a shared global model collaboratively without exposing their data to others, which can protect
the privacy of data and is more suitable for real-world applications. Different from current Federated Multi-Task
Learning and Federated Meta-Learning works, which learn separate personalization models for each client, our
federatedmeta-learning framework expects to train one globalmodel collaboratively to quickly adapt to different
datasets (or tasks) on each device. In addition, our framework does not need to specify the model structure, so it
is model agnostic, whichmakes it flexible under different settings.

• We consider not only the absence of a trust central server, but also the existence of malicious devices, and we
propose a decentralized federated meta-learning framework, which directly allocates the responsibilities of the
central server to some elected committee nodes. This server-less design can avoid the credible problems brought
by the untrusted central server. Besides, the committee nodes can cross-verify whether the clients’ models have
the ability of rapid adaptation, and avoid the attack of malicious devices through filtering and secure aggregation,
so that participants can spontaneously supervise and promote the training process.

• Communication cost is a key concern in federated learning. With the committee strategy, extra communication
costs are expected. We discuss the time complexity of communication and computation for the proposed frame-
work in detail. Then we propose a communication-efficient method based on the timing model, which relaxes the
iteration dependency to 2, so that the training of training nodes and the aggregation of committee nodes can be
carried out in parallel between adjacent iterations while maintaining global synchronization.

• To verify the effectiveness of DFMLF, experiments are carried out on a real-world dataset with different tasks
and different basic models, and the model performances are demonstrated and analyzed. We also design some
simulation experiments with malicious attacks, and verify the robustness of DFMLF by comparing it with other
robust methods. Besides that, experiments show that our communication-efficient method greatly reduces the
communication overhead, and our proposed framework is more efficient than Krum function.

The remaining of this paper is organized as follows. Section 2 surveys the related work. Section 3 introduces our
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framework. Experimental results and analysis are summarized in Section 4. Finally, we conclude the paper in Section
5.

2 | RELATED WORK
2.1 | Meta-Learning
Meta-learning,which only needs a few shots of samples for each category of images to accurately classify theunknown
samples [7, 8], can get a model with good performance for the few-shot multi-task problem. Meta-learning is a sub-
field of machine learning, which aims to learnmeta-knowledge to help the process of modeling and training new tasks.
Meta-knowledge can be expressed as themethodof planning,modeling, labeling, learning, and updating, which usually
exists in themodel as a priori. Researchers use differentmethods to represent the abstractmeta-knowledge into data
that computers can understand, such as initialization model parameters or the model structure[11]. In deep learning,
the objective functions are usually non-convex. This property makes it difficult for the optimization method based
on the backpropagation gradient to find the global optimum in the parameter space, which usually falls into the local
optimumor stagnateswhere the saddle point has a smaller gradient. To solve such non-convex optimization problems,
the initial values ofmodel parameters are crucial. Proper initializationmodel parameters canmake the neural network
model quickly converge to an optimal point. MAML (Model-Agnostic Meta-Learning)[7, 9, 12] defined what are good
initial model parameters, that is, only a few gradient descent steps are needed to achieve good results on a new task.
This is a solution to prevent training overfitting for the few-shot multi-task learning problem.

2.2 | Federated-Learning
Federated learning allows multiple devices distributed in different locations can build a shared global machine learn-
ing model while keeping their data locally. A conventional federated learning architecture generally includes a central
server andmultiple clients. The clients have absolute control over their data, while the central server is only responsi-
ble for parameter aggregation and exchange, and can not directly or indirectly access the data on the clients.

In recent years, security issues of federated learning have gradually attracted attention. Somemalicious attackers
make modifications at the data or model level to affect the performance of the global model. For example, Fung et
al. [13] proposed the label flip attack, which uniformly flips the label of a certain category into another label, so that
the model predicts the samples of this category with a high probability as another specified category. Gu et al. [14]
proposed amore feasible solution, in reality, called Backdoor Poisoning, which only modifies a part of certain features
of the training dataset, such as adding a small watermark to the picture. When processing normal samples, the model
behaves normally, and when it encounters adversarial samples, the model will make incorrect predictions. This attack
method is more difficult to detect and defend than label flip attacks. Bhagoji et al. [15] presented that the attacks
against the model improve the concealment and anti-reconnaissance ability, and are more effective than the attacks
against the data. Bagdasaryan et al. [16] proposed thatmalicious devices can perturb ormodify themodel parameters
before uploading the gradient to achieve the goal of harming the global model. Moreover, Blanchard et al. [17] pro-
posed a Byzantine attack, in which a series of malicious devices will collude to submit similar model updates, leading
the global model in a wrong direction. Due to a large number of malicious devices, it is more difficult to defend than
single-source attacks. Besides, Kang et al. [18] proposed that the workers may inadvertently generate low-quality
updates that adversely affect the effectiveness of federated learning due to the highmobility or energy constraints.

Most of the aforementioned attacks are initiated by the training devices. However, studies have shown that the
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central server may also initiate malicious attacks [5]. Some researchers have proposed decentralized federated learn-
ing. For example, Pappas et al. [19] built a fully decentralized federated learning framework based on the interplane-
tary file system (IPFS), in which each client retains a part of the model. Before training, each client will get other parts
of the model from other clients, combine them into a complete model, and then send updates to other clients after
training. Hu et al. [20] used the gossip protocol to ensure that the data of all nodes are the same, and to complete the
upload and download processes in the conventional federated learning, so as to replace the central server. Roy et al.
[21] proposed BrainTorrent, a server-less Peer-to-Peer federated learning environment, where all clients directly in-
teractwith each other. Li et al. [22] proposed a decentralized federated learning framework, which uses blockchain for
the global model storage and the local model update exchange. However, these decentralized methods will inevitably
bring huge communication overhead. Ng et al. [23] and Lim et al. [24] proposed Serverless Hierarchical Federated
Learning (SHFL) framework, which adopts a two-layer system architecture. In the lower layer, the devices are grouped
into clusters under cluster heads. In the upper layer, the cluster heads exchange the intermediate parameters with
their one-hop neighbors without the aid of a central server. However, the hierarchical federated learning framework
does not apply to the Few-Shot Multi-Task Learning problem, as the number of training samples on a single device is
too small and the training tasks of the devices are different, the clustermethodwill reduce the effect ofmeta-learning.

Besides, huge communication and computation overhead is also a problem in federated learning. Many effective
federated learning methods have been proposed to reduce the communication and computation costs. For example,
Yan et al. [25] employed network pruning operation to accelerate the convergence of training; Hu et al. [26] proposed
to extract the updated information of all the clients’ models and train an auxiliary model on the server to realize in-
formation aggregation via the technique of Knowledge Distillation (KD), which can reduce the required computing
resources of clients. Wang et al. [27] proposed a newmethod for parameters aggregation called orthogonal gradient
aggregation, which removes the corresponding training samples while protecting the previously learned knowledge,
so as to reduce the computation and communication overhead.

2.3 | FederatedMulti-Task Learning
Some recent works have integrated federated and multi-task learning. Humbeck et al. [28] utilized the federated
multi-task feedforward neural network to preserve the privacy of highly confidential and competitive data in the field
of multi-task learning. Smith et al. [29] introduced a federated multi-task framework to address the statistical chal-
lenges in the federated setting. They see the personalization problem of federated learning as a multi-task learning
problem, and the optimization on each client is considered as a new task. Mills et al. [30] proposed a multi-task learn-
ing approach to achieve personalisation in FL, which introduces non-federated Batch-Normalization layers into the
federated Deep Neural Networks. Li et al. [31] focused on the impractical and inefficient problem of the federated
multi-task algorithm in online scenarios (for example, when newmobile devices continue to joinmobile computing sys-
tems), and proposed an online federatedmulti-task learning algorithm. Corinzia et al. [32] developed an algorithm for
federatedmulti-task learning with non-convexmodels using approximated variational inference.

The goal of the above federatedmulti-task frameworks is to learn separatedmodels for each client, which is signif-
icantly different from the conventional federated learning works [2, 3], which aim to train a single global model across
the network. Besides, these federated multi-task frameworks rely on a central server to compute the relationships
amongst tasks. While in practice, the existence of the central server is sometimes not feasible because of the compet-
itive relationship of the clients. In order to eliminate the dependence on the central server, Dinh et al. [33] proposed
a decentralized version of federated multi-tasking learning framework, and He et al. [34] introduced a Decentralized
Multi-Task LearningCorrelationMatrix ExchangingAlgorithm. As there is no server for coordinating the learning, each
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client is required to send its updatedmodel to its neighboring clients in each round of training. Thus, the above frame-
works are vulnerable to the client attacks.

2.4 | FederatedMeta-Learning
Meta-learning is consistent with federated learning, and both are optimization problems of distributed datasets (or
tasks). Jiang et al. have demonstrated theoretically that the two have a mathematical connection [35]. Chen et al.
[10] and Lin et al. established the similarities between meta-learning and federated learning [36]. Some researchers
have put forward federatedmeta-learning in distributed settings. Currently, most federatedmeta-learning focuses on
the personalization model. For example, Alireza et al. [37] and Jiang et al. [35] proposed personalization federated
learning viameta-learning. They regard the datasets on different devices as different tasks, and use the adaptability of
meta-learning to generalize a single global model into multiple personalized models, so as to get models that adapt to
different data distributions. Considering the slow convergence speed and low communication efficiency of federated
meta-learning in the field of edge learning, Yue et al. [38] developed a non-uniform device selection scheme to accel-
erate the convergence. Then, they formulate a resource allocation problem tominimize thewall-clock time alongwith
energy cost.

In addition, there are someworks to considermalicious attacks in federatedmeta-learning. For example, Aramoon
et al. [39] proposed a secure aggregation method in a federated meta-learning framework, which adds a layer of secu-
rity aggregation to resist backdoor attacks. However, the architecture is still a classic federated architecture, which
contains a central server. Bonawitz et al. [40] proposed a gradient encryption aggregation method from the perspec-
tive of encryption, but did not consider the existence of malicious devices. Fung et al. [13] proposed amethod tomod-
ify the aggregation weight to reduce the influence of malicious devices. However, it requires the device to submit the
gradient average of all historical updates, whichwill lead to a significant increase in storage and network transmission.

Different from Federated Multi-Task Learning and Federated Meta-Learning, this article focuses on Federated
multi-task learning on a large number of mobile devices with only a few shots of samples. Most of Federated Multi-
Task Learning and FederatedMeta-Learning generate multiple models to solve personalization problem, while we aim
to train one globalmodel that can be applied tomultiple tasks. In addition, we consider not only the trustworthiness of
the server, but also the security problem of the clients. In this article, we consider a novel server-less federated meta-
learning architecture that eliminates the central server to avoid the security risks caused bymalicious central servers.
At the same time, we design a dynamic committee election strategy, which elects a small number of committee nodes
instead of the conventional central server to aggregate updates. Moreover, these committee nodes will evaluate all
the updates, and only highly reliable updates are aggregated to prevent training devices from doing evil.

3 | OUR FRAMEWORK

In this section, we firstly describe the problem definition and notations. Thenwe introduce the overview of our frame-
work. In sections 3.3 and 3.4, the specific training processes of training nodes and committee nodes are described
in detail respectively, including the meta-training of the training nodes, committee verification, aggregation, and elec-
tion of the committee nodes. In section 3.5, we analyze the time complexity of communication and computation, and
propose a communication-efficient method for our framework.
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3.1 | ProblemDefination andNotations
We assume there exist N devices {C1,C2, ...,CN }whichmeet the following conditions:

• Any two devices are network reachable;
• Each device has local training tasks and local dataset;
• Each device has the ability of model training;
• Each device is reluctant to share its local dataset.

The tasks and local dataset of Ci are represented as {Ti } and {Di } respectively. Each task has a few shots of
data samples with labeled data, that is Di = (Xi ,Yi ). We divide the dataset {Di } into Support Set D spti

and Query Set
D
qr y
i
. D spt

i
is used for the training of the model, and D qr y

i
is used to verify the model adaptation and update the meta-

learner. In order to verify the ability of the model to quickly adapt to other tasks, we assume that there are some new
nodes, called test nodes, that are not involved in the model training, while having local training tasks and need rapid
adaptation. The number of test nodes is recorded asM , and the test nodes are recorded as {CN+1,CN+2, ...,CN+M },
the symbols of the task sets and datasets on the test nodes also follow the same definition as the above training node.
As shown in Fig. 2, this is an example of image classification. There are 12 training nodes C1,C2, ...,C12, they have
different classification tasks, and a few shots of images. For example, for training node C9, taskT9 is to classify house
and horse, D spt9 provides a few shots of labeled images of house and horse to the model for training, and D qr y9 is used
to verify the training adaptation; for training node C10, taskT10 classifies dog and bird, D spt10 and D qr y10 provide images
of dog and bird for training and verification respectively. According to the general definition of meta-learning, we call
the number of classification targets of a task as n-way, and the number of training samples for each category is called
k-shot. In the above example, the two-category task means 2-way, D spt

i
provides two samples for training, then the

task is called a 2-shot task. For an n-way k-shot task, the dataset size is |D spt | + |D qr y | = 2nk, where | · | refers to the
number of elements in a set.

As each task has only a few shots of images, which is not enough to train a model, thus it is necessary to train the
model collaboratively. The model is represented as Fθ (x ), where F is the basic model that completes a specific task, θ
is the parameter vector of the model F , and x is the input sample feature. The motivation is to find a globally shared
model parameter vector θ, which can quickly adapt to different tasks. In our framework, there is only one restriction
on the basicmodel: the objective function is differentiable. In view of this, mostmodels based on gradient descent can
be used, including the Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), and so on. We assume
that the architecture of the model F and its hyperparameters (such as the learning rate) are consistent on each node.
In addition, if all tasks are irrelevant, no meta-knowledge can be transferred. Therefore, we assume that the above
tasks are subject to a potential distribution ofTi ∼ p(T ).

3.2 | FrameworkOverview
The framework has two kinds of node roles: training nodes and committee nodes. Devices can change roles and com-
plete different tasks. Because the devices can be connected to each other, they can form an alliance in which some
protocols or contracts, such as Smart Contract and Practical Byzantine Fault Tolerance (PBFT) protocol [41], are ap-
plied to realize role management and switching.

• Training node: The training nodes use local datasets for training and are responsible for local updating of model
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F IGURE 2 There are 12 training nodes and 4 test nodes. The task on each node is different.

parameters;
• Committee node: The committee nodes are responsible for the validation and aggregation of model parameters.

In each round, some devices play the role of committee node. In the first round of training, the devices willing
to become committee nodes can be committee nodes. And in the next rounds, the committee nodes will be elected
according to a certain selection strategy. In the meantime, some devices play the role of training node. These training
nodes can be spontaneous or selected by the committee nodes.

We formally define the overview framework as Fig. 3, where t represents the t -th global round of federated learn-
ing:

(1) Each training node Ci receives the current global model parameter vector θt , and performs rapid adaptation
and adaptation verification based on their local support set D spt

i
and support set D spt

i
respectively, and then updates

themodel parameter vector θt through themeta-learner to quickly adapt to the new tasks.
(2 )After training, each training nodeCi sends the updatedmodel parameter vector θti to all the committee nodes.
(3)After aperiodof time, or the committeenodes receivea certain amountof theupdatedmodel parameter vector

θt
i
send by training nodes. The committee node needs to reach a consensus on filtering malicious training nodes and

secure aggregation. We consider the situation of heterogeneous networks and heterogeneous devices, that is, the
transmission speed and training time of training nodes are various, resulting in a different set of θt

i
received by each

committee node. Therefore, each committee node should transmit the model parameter vector it receives to other
committee nodes, so as tomake all committee nodes have themodel parameter vector sent by the training nodes that
can be received. Then, each committee node begins to validate the updated model parameter vectors it receives. Af-
ter verification, each committee nodewould possess the scores of themodel parameter vectors submitted by training
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TABLE 2 Notations and explanations

Modules Notations Description

Node
N the number of nodes
M the number of test nodes
Ci i -th node

Dataset

Ti the task of nodeCi
Di the dataset of nodeCi
Xi the input feature of nodeCi
Yi the output label of nodeCi
D
spt
i

the Support Set of nodeCi
D
qr y
i

theQuery Set of nodeCi

Model

F the architecture of the basic model
θ the parameters of the basic model
L the loss function of the basic model
n the number of classification targets of a task
k the number of training samples for each category
τ the number of local gradient update steps
α the learning rate for rapid adaptation
β the learning rate for meta-learner

Committee N t r ai n the number of training nodes
Ncomm the number of committee nodes

nodes. These scores reflect the ability of the model parameter vectors to adapt to new tasks quickly. To filter out
malicious attacks, the committee nodes sort the training nodes according to the verification scores in descending or-
der, and select the model parameter vectors of the non-Byzantine training nodes to aggregate the new global model
parameter vector.

(4) After global aggregation, the committee nodes need to be re-elected. We define that some non-Byzantine
training nodes are randomly selected as the committee nodes of the next round according to the verification scores.

(5) The current committee nodes become common nodes and can participate in the next round of training.
(6) The training nodes are selected for the next round.
Thewhole programwill continue until converging to an optimum.

3.3 | Training Nodes
We wish to train an initial global model in meta-learning, which can quickly adapt to other tasks. That is, the initial
globalmodel is expected to have a better generalization performance on anunseen task during the testing phase byup-
datingwith a fewexamples. Therefore, we shouldfindmodel parameters sensitive to task changes, thus, small changes
in parameter vectorwill greatly improve the loss function on any task. The devices thatwant to participate in the train-
ing have been listening to the signal of the network and waiting to receive the global model parameter vector θ. Af-
ter the training nodes download the global model parameter vector θ, they use a meta-learning optimization method
based on gradient descent to update the global model parameter vector by using their local datasets. Meta-learning
focuses on finding one initial globalmodel parameter vector θwhich performswell on all tasks, that is, the initial global
model parameter vector θ has rapid adaptability, and it only requires a small number of training rounds to achieve good
performance on new tasks. We divide themeta-learning process of training nodes into the following three steps:

Rapid Adaptation. In order to get the level of the rapid adaptability of the initial global model parameter vector θ,
it should perform once or multiple adaptions on a new taskTi . The training node i performs training based on its local
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F IGURE 3 TheDecentralized FederatedMeta-Learning Framework for few-shot multi-task learning: (1) The
training nodes obtain the latest global model parameter vector and conduct meta training locally; (2) The training
nodes send themodel updated parameter vector of local training to the committee nodes; (3) The committee nodes
perform verification and aggregation; (4) Randomly select some non-Byzantine training nodes to become the
committee nodes of the next round; (5) The current committee nodes become common nodes; (6) The training nodes
are selected for the next round.

support setD spt
i
to update the initial global model parameter vector θ. We take the image classification as an example,

the loss function is as follows:

L(Fθ ,D
spt
i
) = −

∑
xi

yi log ŷi , (1)

where yi is the ture label of input data xi , and ŷi = Fθ (xi ) is the probability distribution of each category predicted by
the basic model. Assuming that the loss function is differentiable, the training node i performs one gradient descent
on themodel parameter vector θ. The updating can be defined as:

θ′i = θ − α+θL(Fθ ,D
spt
i
), (2)

where α is the learning rate of rapid adaptation.
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Adaptation Verification. After the updating of Eq. 2, the initial globalmodel parameter vector θ has been adapted
on the taskTi . We don’t care about the performance of θ on taskTi , instead, we focus on the rapid adaptability of the
updated global model parameter vector θ′

i
which is updated based on θ. Therefore, the adapting effect of θ′

i
is verified

on the request set of the same taskTi :

L(Fθ′
i
,D

qr y
i
) = L(F

θ−α+θL(Fθ ,D
spt
i
)
,D

qr y
i
). (3)

As shown in Eq. 3, the training variables are still the model parameter vector θ in the loss function of the verifica-
tion phase. The physical meaning is the performance of θ after adapting to the new task.

Meta-Learner. Since our aim is to learn amodel parameter vector θ, which canmake rapid progress on new tasks,
we should find model parameter vector sensitive to task changes. In this way, small changes in parameter vector will
greatly improve the loss function on any task. The meta-learner optimizes the Eq. 3 based on gradient descent to
achieve the goal of rapid adaptation. The optimization process of meta-learner can bewritten as follows:

θ′i ← θ − β+θL(Fθ′
i
,D

qr y
i
), (4)

where β is the learning rate of themeta-learner. There is a derivative operation in the expansion of θ′
i
, thus the deriva-

tion of Eq. 4will contain the term of second derivative. By further expansion, the gradient of the above formula can be
rewritten as:

+θL(Fθ′
i
,D

qr y
i
) =+θτ L(Fθτ ,D

qr y
τ )

·

τ∏
i=1

(I − α +θi−1 (+θL(Fθi−1 ))︸ ︷︷ ︸
second order

),

whereτ is the number of local gradient update steps. In practical, the secondorder derivation canbe removed to speed
up the training of the model [7]. When the second order derivation is ignored, we get a first-order approximation of
the update direction of themeta-learner:

+θL(Fθ′
i
,D

qr y
i
) ≈ +θτ L(Fθτ ,D

qr y
τ ).

After training, the training node i sends the updatedmodel parameter vector θ′
i
to all committee nodes.

3.4 | Committee Nodes
In conventional federated learning, there is a central server to aggregate the updated model parameter vectors sent
by training nodes. We replace the central server with some elected committee nodes. The framework eliminates the
central server, thus getting rid of the possibility of the server doing evil. Meanwhile, the committee can effectively
locate the malicious training nodes and invalidate them by sorting and filtering. Moreover, the dynamic committee
electionmechanism can further improve the robustness of model training.

In this section, We will introduce how the committee nodes filter the malicious training nodes; and how to reach
a consensus among committee nodes to achieve secure aggregation; and then introduce the dynamic committee elec-
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tion strategy.

3.4.1 | Validation
Blanchard et al. [42] proposed a Byzantineworker can force the central server to select the updatedmodel parameter
vector whose direction is too far away from others, so that the average based methods cannot converge. To tolerate
Byzantineworkers, manyworks have been proposed to choose appropriate updates sent by theworkers. For example,
Chen et al. [43] suggested using the geometricmedian of the received updatedmodel parameter vectors instead of the
average for aggregation. Blanchard et al. [42] proposed Krum function, which combines majority-based and distance-
based methods to select the updated model parameter vectors closest to a certain number of neighbors to aggregate,
which is usually the number of non-Byzantine workers.

Most of these works assume that the data owned by participants are i.i.d, which is not in line with the actual sit-
uation of federated learning. Because in federated learning, the amount of participants’ data is very small compared
with the whole data, and the data distribution is different from thewhole data. Therefore, the local model will deviate
from the global model, and there will be great differences between local models. Different from the above works, in
our framework, the committee nodes have their own data and can use their own data to judge the quality of themodel,
so as tomore accurately identify malicious nodes and even rank the degree of thesemalicious nodes.

As mentioned in the previous section, each node only has a small amount of training data, and the optimization
goal of the meta-learning is to quickly adapt to new tasks. The physical meaning of one good global model parameter
vector θ is that it is a better initial parameter vector that can rapidly adapt to new tasks. In this section, we design a
verificationmethod for rapid adaptability of the globalmodel parameter vector θ. AssumeCj is a committee node, and
it evaluates the rapid adaptability of themodel parameter vector θ.

First, the committee nodeCj uses θ to adapt to the its task based on the local support dataset:

θ′ = θ − α+θL(fθ ,D
spt
j
), (5)

where θ′ is the updated model parameter vector fitted on committee nodes. Then θ′ is used to complete the forward
propagation and obtain the prediction results on the query datasetD qr y

j
:

Ŷ = Fθ′ (X̂ (D
qr y
j
)), (6)

where X̂ (·) is the operation of extracting training sample features. The predicted value of ŷ will be compared with the
real value of y :

Accur acy =
1

|Y |

|Y |∑
i=1

É(ŷi = yi ), (7)

where É(·)is the indicator function, which returns 1when ŷi = yi , and 0 otherwise.
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3.4.2 | Secure Aggregation
After verification, each committeenodegets the scoresof all themodel parameter vectors submittedby trainingnodes.
These scores reflect the ability of themodel parameter vectors to adapt to new tasks. However, the order of the score
set owned by each committee node is different. This is largely due to two reasons: 1) the datasets and task sets of com-
mittee nodes are different, the adaption ability of the samemodel parameter vector on different new tasks are varied;
2) some committee nodesmay bemalicious or attacked bymalicious nodes, they give high scores tomalicious training
nodes, or give low scores to honest training nodes. Therefore, we need to design a robust strategy to accurately filter
malicious training nodes in the case of Byzantine committee nodes, so as to achieve secure aggregation.

Wehave abasic intuition, that is, in all the score sets of non-Byzantine committee nodes, the scores of allmalicious
training nodes are lower than that of all honest training nodes. We assume thatNt r ai n is the number of training nodes,
f is the number of Byzantine training nodes, Ncomm is the number of committee nodes, f is the number of Byzantine
committee nodes.

The overview of our secure aggregation algorithm is as follows:
Step 1: A committee node is selected as themain committee node by rotation or random algorithm.
Step 2: The main committee selects the training node with the highest score in the current period, and creates a

request < Request , t r ai ni ng -node-i d , oper at i on, t imest amp > to ask whether its model can be aggregated. Then
the main committee node broadcasts the request to all other committee nodes. The operation in the request is to
aggregate the updated parameter vector of the selected training node to the global model parameter vector as Eq. 8:

θt+1 =
1

Nt r ai n − f
θti , (8)

where θt
i
represents the model parameter vector submitted by training node Ci in the t -th round. Note that Eq. 8 is

different from the the federated aggregation in FedAvg [44], Eq. 8 does not consider the weight of the node’s dataset
size. The reason is as follows: (1) for security,malicious attacks can control theirweights by falsely reporting the size of
the dataset; (2) for privacy, the dataset size is one of the data attributes, which is privacy sensitive andmay reduce the
difficulty of reverse engineering of malicious attacks; (3) for small sample settings, the data sizes of nodes are similar,
and each node only has a small amount of data.

Step 3: All committee nodes except the main committee node process the request. Each of them checks whether
the selected training node is in the topNt r ai n − f nodeswith the highest score. If so, it performs aggregation operation
as Eq. 8 and checks whether the result is consistent with the request. If so, the processing result
< r epl y , t imest amp, t r ai ni ng -node-i d , r esponse > is returned to themain committee node.
Step 4: The main committee node checks whether it has received at least f + 1 identical results from other com-

mittee nodes. If it receives f + 1messages and the consensus is reached in these messages, we can consider that the
consensus is reached in the current period.

Step 5: If the request is successful, this indicates that the aggregation operation of the selected training node
has been completed on all committee nodes; otherwise, if the original request is denied, this illustrates that the main
committee nodemay be amalicious node, so it is necessary to reassign themain committee node.

Step 6: The process iterates until themodel parameter vectorwithNt r ai n − f training nodes are aggregated. After
the global aggregation, θt+1 will be sent to the training nodes as the starting point of the next round of training.

We analyze the security of our aggregation algorithm from two perspectives:

• Security of committee nodes: because there are f Byzantine committee nodes, according to the principle that the
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minority obeys themajority, the number of non-Byzantine committee nodesNcomm − f only needs onemore node
than f , that is, Ncomm − f = f + 1. The number of non-Byzantine committee nodes will be more than the number
of Byzantine committee nodes, so the committee can reach a consensus. The total number of committee nodes
is Ncomm = f + (f + 1), the maximum number of Byzantinet-tolerant committee nodes supported in this case is
(Ncomm − 1)/2.

• Security of training nodes: asmentioned above, for non-Byzantine committee nodes, the scores ofmalicious train-
ing nodes are lower than that of non-Byzantine training nodes. That is, if we sort the training nodes according to
the verification scores in descending order, for any non-Byzantine committee node i , the list of training nodes it
owns is as follows:
– [1, 2, 3, ...,Nt r ai n − f ] be indexes of non-Byzantine training nodes;
– [n − f + 1, ...,Nt r ai n ] be indexes of Byzantine training nodes.
We can see that for any non-Byzantine training node j , j ∈ {1, 2, 3, ...,Nt r ai n − f }, regardless of the number of
Byzantine training nodes f , j is always in the top Nt r ai n − f of the list of all the non-Byzantine committee nodes.
Therefore, as long as the number of Byzantine committee nodes f is lower than (Ncomm − 1)/2, the non-Byzantine
committee nodes can filter out any number of malicious training nodes successfully.

3.4.3 | Dynamic Committee Election Strategy
The local tasks of the committee nodes can not represent the distribution of global tasks, so the static committee is
not conducive to improving the generalization of the model. We design a dynamic committee election strategy: in
each global round, after global aggregation, Ncomm training nodes will be randomly selected from the non-Byzantine
training nodes as the committee nodes of the next global round. Then, the current committee nodes become training
nodes and canparticipate in the training tasksof thenext global round. Here,weassume that thenumberof committee
nodes Ncomm is less than the number of non-Byzantine training nodes Nt r ai n − f , as a small committee will reduce the
amount of calculation and communication in the phase of validation and aggregation.

The advantages of our dynamic committee election strategy are as follows:
Robustness and fairness : the validation dataset is replaced after the general election of the committee nodes,

which is similar to K-Fold cross-validation in classical machine learning training, and can improve the performance of
model trainingwhen the total amount of data is small. In addition, it is noticed that we randomly select the Committee
nodes from the training nodes instead of the training nodes with the highest scores as the Committee nodes. This is
because the random selection strategy will give all honest nodes the opportunity to be selected as committee nodes,
which improves the generalization and fairness of the model. The optimal strategy will lead the system to choose
the nodes consistent with the data distribution of the initial committee nodes as the next round of committee nodes,
resulting in poor generalization performance and unfairness of the final model.

Security : if the number of non-Byzantine committee nodes is greater than Ncomm/2, we rank the training nodes
according to the scores of the committee nodes on the training nodes, and the malicious training nodes are ranked
after the honest training nodes. We only select committee nodes from honest training nodes, and malicious training
nodes will not be aggregated or become the next committee nodes. In another case, a malicious training node may
disguise itself as a normal training node before becoming a committee node, and it starts to attack the system after
being selected as a committee node. Assuming that the probability that each training node is selected as a committee
node is the same, in order to avoid the number of malicious committee nodes accounting for more than half, we need
to ensure that the number of malicious training nodes is less than half. That is, f < Nt r ai n/2.
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F IGURE 4 The t -th round of our algorithm

3.5 | Communicaiton-EfficientMethod
In this section, wewill analyze the complexity of our algorithm. The t -th round of the algorithm is summarized in Fig. 4,
and described as follows:

(1) Each training node Ci receives the same global model parameter vector θt , and then performs rapid adaption
via Eq. 2 and adaption verification via Eq. 4. After that, it sends the local updatedmodel parameter vector θt

i
to all the

committee nodes.
(2) As the heterogeneous networks and devices, each committee node Cj only receives the local updated model

parameter vectors from some training nodes. Each committee nodeCj broadcasts the local updatedmodel parameter
vectors it receives to other committee nodes. Then, each committee node Cj begins to validate these local updated
model parameter vectors via Eq. 5 and Eq. 6.

(3)After verification, the committeenodes sort the trainingnodes according to the scores indescendingorder, and
select the local updated model parameter vectors of the non-Byzantine training nodes to aggregate the global model
parameter vector together. Then, the newglobalmodel parameter vector θt+1will be broadcasted to all training nodes.

We analyze the time complexity of our algorithm in two aspects: communication and computation,Tcom andTcmp
refer to the time taken by communication and computation, respectively.

3.5.1 | Computation Complexity
For training nodes : The main computation of training node is to evaluate the gradients of rapid adaption and meta-
learner. The computational complexity of evaluating the gradients isO ( |D | |θ |), where |D | is the number of data sam-
ples, |θ | it thenumberofmodel parameter vector θ. Therefore, for each trainingnodeCi , the computational complexity
Tcmp−t r ai n = Tadapt i on +Tmet a = O (

���D qr yi
+ D

spt
i

��� ∗ |θ |).
For committee nodes : In the phase of broadcasting, the committee node’s main workload is to compare whether

themodel parameter vectors it receives are consistentwith that sent by other committee nodes, so the computational
complexity of broadcastingTbr oadcast i ng = O (Ncomm ∗ Nt r ai n ∗ |θ |).

In the phase of validation, the committee node’s main calculation is to evaluate the updatedmodel parameter vec-
tors sent by training nodes via Eq. 5 and forward propagation via Eq. 6. So the computational complexity of validation
Tv al i dat i on = O (Nt r ai n ∗

���D sptj

��� ∗ |θ | + |θ |).
In the phase of aggregation, the main calculation of committee node is to compare whether the model parameter

vectors are consistent andaggregate themodel. Therefore, the computational complexityof aggregationTagg r eg at i on =



XIAOLI LI ET AL. 17

F IGURE 5 The TimingModel which relaxes the iteration dependency to 2

F IGURE 6 The communication-efficient method for our framework

O (Ncomm ∗ Nt r ai n ∗ |θ |) +O ( |θ | ∗ Nt r ai n ).
The computation time of Krum [42] isO (Nt r ai n 2 ∗ |θ | +Nt r ai n ). As the number of committee nodesNcomm is much

less than the number of training nodes Nt r ai n , our aggregation algorithm is more efficient than Krum.

3.5.2 | Communication Complexity
The communication time is equal to the amount of data transferred s divided by the transmission rate r : Tcom = s/r .
As we can see from Fig. 4, four transmissions are required in one iteration.
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First, each training node Ci upload its local updated model parameter vector θti to all the committee nodes, the
uplink timeTcom−up1 = O (Ncomm ∗ |θ | /r ); and the downlink time of each committee node isTcom−down1 = O (Nt r ai n ∗

|θ | /r ).
Second, each committee node will send the local updated model parameter vectors it receives to all the other

committee nodes, thus the uplink timeTcom−up2 = O (Ncomm ∗Nt r ai n ∗ |θ | /r ); and the downlink time of each committee
node is as same as the uplink time.

Third, the main committee node will send the honest model parameter vectors to all the other committee nodes,
and the other committee nodes send back the aggregated globalmodel parameter vector to themain committee node.
Therefore, the uplink timeTcom−up3 = O ((Nt r ai n − f ) ∗ Ncomm ∗ |θ | /r ); and the downlink time is as same as the uplink
time.

Fourth, thenewglobalmodel parameter vector θt+1 is broadcasted toall nodes. Therefore, theuplink timeTcom−up4 =

O (N ∗ |θ | /r ); and the downlink time is as same as the uplink time.

3.5.3 | Communication-EfficientMethod
We divide the total time required by the whole process into two parts, one is the training time of the training nodes,
the other is the computation and communication time of the committee nodes. Then, for training nodes:

Tt r ai n = O (
���D qr yi

+ D
spt
i

��� ∗ |θ |); (9)

for committee nodes:

Tcomm = O (Nt r ai n ∗
���D sptj

��� ∗ |θ | + Ncomm ∗ Nt r ai n ∗ |θ |). (10)

Because the values ofNcomm ,Nt r ai n ,
���D sptj

���, ��D qr yi

��, and ���D spti

��� are relatively small, we can see fromEq. 9 and Eq. 10
that the time required for the two parts is not much different. In conventional synchronous federated learning, after
a round of training, the training nodes need to wait for the committee to aggregate and generate a new global model
before they can start the next round of training. Thus, the total runtime is: T = Tt r ai n + Tcomm . To address the long
execution time for synchronous training, we use the timingmodel proposed by Li et al. [45], which relaxes the iteration
dependency to 2, that is, each update depends on the updates of the 2-th last iteration. Thismakes the training of train-
ing nodes and the aggregation of committee nodes can be carried out in parallel and interleaved between neighboring
iterations while maintaining global synchronous communication, as shown in Fig. 5.

However, in the timing model[45], all clients are required to participate in the training every round. Different
from that, in our framework, the clients participating in training are different in each iteration. In order to achieve
the consistency of training iteration, that is, the results of each training iteration can provide information for the next
training iteration, we rewrite Eq. 8 as follows:

θt+1 =
θt + θt

i

2 ∗ (Nt r ai n − f )
. (11)

The communication-efficient method is shown as Fig. 6. The total runtime is: T = max {Tt r ai n ,Tcomm }, where the
total runtime is solely determined by either training nodes or committee nodes.

Algorithm 1 illustrates DFMLF.
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Algorithm 1:Decentralized FederatedMeta-Learning Framework for few-shot multi-task learning
Input: Nt r ai n , Ncomm , N , θ, learning rate
Initialize+θ of iteration [−1, 0] as zero andmark them as ready;
for t = 1,2,3,...,T do
foreachCi ∈ {CNt r ai n } do in parallel
Wait until the global model parameter vector+θt−2 is ready;
Update θt

i
= θt−1 − γ ∗ +θt−2;

Perform rapid adaption via Eq. 2;
Perform adaption verification via Eq. 4;
Send the updatedmodel parameter vector θt

i ′
to all the committee nodes;

end
foreachCj ∈ {CNcomm } do in parallel
Wait until some updated local model parameter vector θt

i ′
are ready;

Broadcasts the received θt
i ′
to other committee nodes;

Evaluate the θt
i ′
of training nodes via Eq. 7;

Aggregate the new global model parameter vector θt+1 via Eq. 11;
Select some honest training nodes randomly as the committee nodes of the next round;
The current committee nodes become normal nodes;

end
end

4 | EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we present the experimental setup, including the real-world datasets, models, and environment in Sec-
tion 4.1, and introduce comparedmethods in Section 4.2. Thenwe report experimental results and parameter analysis
in Section 4.3 and Section 4.4, respectively.

4.1 | Experimental Setup
Considering system heterogeneity [46] and enormous participated devices [38] in federated learning, the number of
clients participating in each round of training is small. In all of our experiments, we sample 1000 nodes to participate
in training from the training set, the number of training nodes participating in each round is 1% of all training nodes,
and randomly generate 10 test nodes from the test set to test the current model. These test nodes represent the node
newly added, their local datasets have not been trained and can be used to evaluate the training performance of the
global model. This ensures that the model evaluation is performed on unseen samples, so it can effectively reflect the
generalization performance of themodel.

4.1.1 | Datasets
WeemployOmniglot andminiImageNet, two datasets commonly used in the field of few-shot learning research.

(1) Omniglot: Omniglot contains a series of handwritten character images, including 1623 different characters
from 50 different languages. And each character contains 20 data sample images written by different people. Thus,
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F IGURE 7 Similar characters written in eight different languages.

there are 32460 images in the whole dataset. In these images, some characters written in different languages may be
similar. For example, Fig. 7 shows similar characters in eight different languages, all of which are in the form of English
character p orGreek character ρ. In order to classify these images, we can train a recognitionmodel for each language,
or we can gather all the samples together to train a single model. However, the problem of the former is that the num-
ber of individual language samples is too small to train amodel; while the latter problem is that the target dimension of
the model will increase sharply, becoming a 1623 classification problem that is difficult to train, and classifying similar
samples into other languages.

Faced with such a problem setting, we construct Omniglot into multiple different tasks and learn the common
knowledge among them to complete the training of different tasks. For example, as shown in Fig. 8, we construct a
5-way, 1-shot task for each node. First, we randomly select 5 characters from the above 1623 characters. Then from
the 20 samples of each character, we select 1 samples as the support set D spt , and the other 1 samples as the request
setD qr y . We divide 1623 characters into training set and test set, the sizes are 1423 and 200 respectively. The sampling
of the training process will be performed on the training set, and the sampling of the new node will be performed on
the test set.

(2) miniImageNet: miniImageNet contains 100 classes, each class has 600 examples, that is, a total of 60000 colour
images of size 84 × 84. Andwe used 80 classes for training and tested on the remaining 20 classes. The experiments on
miniImageNet revolve around the same basic task as Omniglot. That is, each client is assigned a set of 2 × k examples
from each of the n classes, k of which are the support set and the other k samples are the request set. Then, the task
is to classify a disjoint batch of unlabelled examples into one of these n classes. The larger the number of n-way, the
larger the dimension of classification task and the greater the difficulty of training; the larger the number of k-shots,
themore training data, thus the less difficulty of training.

Most of the current centralized Meta-Learning methods [7, 47] generally use 1 or 5 shots to realize fast learning
of n-way classification. For a 5-way, 5-shot task, each node should have 50 samples, which is often unrealistic in fed-
erated learning, as each client only has a very small amount of data. Therefore, we construct 1 or 2 shots for n-way
classification, which is muchmore difficult than the centralizedMeta-Learningmethods.

As for n-way classification, the centralized Meta-Learning methods [7, 47] construct a 20-way classification for
Omniglot, which is difficult to converge in federated scenarios, as there are only 10 nodes participating in training in
each round in the Federated learning, which is far less than 20. Chen et al. [48] construct 5-way classification task for
bothOmniglot andminiImageNet in FederatedMeta-Learning. In view of this, we construct "5-way, 1-shot", "5-way, 2-
shot", "10-way, 1-shot", and "10-way, 2-shot" scenarios on theOmniglot, and "5-way, 1-shot", "5-way, 2-shot" scenarios
onminiImageNet.



XIAOLI LI ET AL. 21

F IGURE 8 An example of 5-way, 1-shot task setting. In each task, the first line is the support set, and the second
line is the query set, so there are a total of 2nk = 10 samples.

4.1.2 | Models
ForOmniglot, we use twodifferent basicmodels for training, CNNandMLP. The structure of the basicmodel CNNand
MLP is shown in Table 3. In themodel CNN, the four-dimensional tensor represents thewidth, height, channel number
and convolution kernel number of the convolution layer, and the one-dimensional vector represents the offset, the
total number of parameters is 111749; In the model MLP, the two-dimensional matrix of the full connection layer
represents the input and output dimensions, and the one-dimensional vector represents the offset, the total number
of parameters is 246597. The number of parameters of the MLPmodel is much more than that of the CNNmodel, so
the difficulty of training also increases.

For miniImageNet, we use ResNet18 [49], which is a convolutional neural network that is 18 layers deep, and
LSTM (Long short-termmemory), which is a two layer LSTMbinary classifier containing 64 hidden units.

We set the learning rate for rapid adaptation α = 0.1, the learning rate for meta-learner β = 0.001 for Omniglot;
and α = 0.01, β = 0.001 for miniImagenet. We set the global iteration to 4000 rounds, the number of training nodes
participating in each round Nt r ai n = 10, and the number of committee nodes Ncomm is 40% of the number of training
nodes participating in training. And in each round, we randomly generate 10 new test nodes to test the global model
parameter vector and calculate the accuracy via Eq. 7, and thenwe use the average value of these 10 nodes as the test
result.

4.2 | ComparedMethods
We carried out experiments from three aspects: effectiveness, robustness and efficiency. In this section, we will intro-
duce the comparisonmethods of these three aspects respectively.
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TABLE 3 The structure of the basemodel CNN andMLP

#layers CNN MLP
1 (3, 3, 1, 64) + (64,) (784, 256) + (256,)
2 (3, 3, 64, 64) + (64,) (256, 128) + (128,)
3 (3, 3, 64, 64) + (64,) (128, 64) + (64,)
4 (3, 3, 64, 64) + (64,) (64, 64) + (64,)
5 (64, 5) + (5,) (64, 5) + (5,)

Total:111749 Total:246597

4.2.1 | ComparedMethods of Effectiveness
For effectiveness, we will compare with several different training frameworks to verify whether our framework can
effectively train themodel in the distributed few-shot multi-task setting. The comparison training frameworks are:

• Centralized [7]: This framework collects all training tasks as a single dataset for training, and does not consider
restrictions such as data privacy. This framework represents the upper bound of the model effect in federated
learning [50, 51];

• Pre-train [7]: This framework is represented as the pre-training mode of a single model on all tasks. It regards
all tasks as the same task, regards the data on different nodes as different batches of data, and trains the model
serially on each node;

• Fed-Meta [10]: This framework is a classic federated learning architecture, including a central server andmultiple
training nodes. Each training node performs meta-learning, and uploads updates to the central server for averag-
ing without verification process;

• DFMLF-Optimal: DFMLF is our proposed committee-based server-less decentralized federated meta-learning
framework. In order to verify our random-based committee election strategy, we select the training nodes with
the highest scores as the committee nodes in this comparisonmethod.

• DFMLF-Random: In order to verify our communication-efficient method, we designed this comparison method
for ablation experiment. This framework randomly selects committee nodes from honest training nodes without
the communication-efficient method.

• DFMLF-Efficient: Our proposed framework with the communication-efficient method, which randomly selects
the committee nodes from the honest training nodes.

4.2.2 | ComparedMethods of Robustness
By simulating malicious attacks and comparing with other robust methods, we verify whether our framework can ef-
fectively resist malicious attacks against model parameter vectors and maintain the robustness of model training per-
formance. These robust methods focus on the model aggregation stage to resist malicious attacks, and their training
frameworks are unified as federatedmeta training [10].

• Naive: This aggregationmethod averages the parameters and does not consider the problem ofmalicious attacks.
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TABLE 4 The performance of different frameworks based on theOmniglot dataset

Methods 5-way, 1-shot 5-way, 2-shot 10-way, 1-shot 10-way, 2-shot

CNN

Pre-train 28.71 ±1.03 28.20 ±1.08 14.62 ±0.62 15.37 ±0.58
Centralized 95.49 ±0.41 97.12 ±0.30 87.34 ±0.45 86.18 ±0.60
Fed-Meta 91.22 ±0.96 94.11 ±0.80 78.67 ±0.81 88.29 ±0.44

DFMLF-Optimal 91.32 ±1.36 94.73 ±0.49 80.19 ±1.02 87.84 ±0.44
DFMLF-Random 91.40 ±0.68 94.50 ±0.59 80.70 ±1.02 88.49 ±0.80
DFMLF-Efficent 91.87 ±0.95 94.95 ±0.48 80.35 ±0.99 88.51 ±0.66

MLP

Pre-train 23.97 ±0.82 22.22 ±1.25 12.16 ±1.07 10.86 ±0.38
Centralized 81.73 ±1.42 90.83 ±0.85 79.22 ±0.68 87.72 ±0.39
Fed-Meta 85.03 ±1.51 92.31 ±0.59 84.15 ±0.78 84.07 ±1.39

DFMLF-Optimal 84.59 ±1.05 90.91 ±0.95 82.64 ±0.92 87.89 ±0.40
DFMLF-Random 85.48 ±1.12 93.46 ±0.52 84.51 ±0.72 89.15 ±0.54
DFMLF-Efficent 86.68 ±1.07 92.90 ±0.56 84.90 ±0.74 88.52 ±0.52

TABLE 5 The performance of different frameworks based on theminiImagenet dataset
Methods ResNet18 LSTM

5-way, 1-shot 5-way, 2-shot 5-way, 1-shot 5-way, 2-shot
Pre-train 22.25 ±1.04 22.46 ± 0.73 22.41 ± 0.80 22.53 ± 0.79
Centralized 40.18 ± 1.35 42.95 ± 1.48 33.56 ± 1.66 37.29 ± 1.36
Fed-Meta 32.28 ± 1.18 36.39 ± 0.96 31.22±1.30 34.23 ± 0.90

DFMLF-Optimal 34.08 ±1.56 40.32 ± 0.90 33.08± 1.22 31.89 ± 1.30
DFMLF-Random 34.06 ±1.42 39.58 ± 1.25 32.96± 1.31 34.62 ± 0.84
DFMLF-Efficent 34.17 ±1.36 39.31 ± 1.13 33.08±1.38 34.75 ± 0.81

• Median [43]: This aggregation method first sorts the parameters according to their values, and discards the maxi-
mum values of λ%and theminimum values of λ%, and then averages the remaining parameters, where λ ∈ [0, 50);

• Krum [42]: This aggregation method assumes that the directions of the model parameter vectors submitted by
honest nodes are relatively similar. By calculating the angle between the model parameter vectors, Krum selects
the vectors closest to a certain number of neighbors to aggregate;

• DFMLF-Efficient: The proposed framework with the communication-efficient method, in which the committee
nodes verify the parameter vectors of training nodes, and aggregate the local updates of the honest training nodes.
And the committee nodes are randomly selected from the honest training nodes.

4.2.3 | ComparedMethods of the Efficiency
In the DFMLF, the validation and secure aggregation of the committee nodes will incur additional communication and
computation overhead. We propose a communication-efficient method to improve the wall-clock time. In order to
clarify the efficiency of our method, we compare the followingmethods:

• Fed-Meta: This method is based on the classic federated learning architecture, which requires a central server,
and does not consider the problem ofmalicious attacks;
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• Fed-Krum: This method is also based on a centralized federated learning architecture. The central server needs
additional calculations to filter malicious training nodes;

• BrainTorrent[21]: Anew federated learningarchitecturewithout a central server,whereall nodesdirectly interact
with each other to share parameter vectors;

• DFMLF: The proposed framework without communication efficient method, and the responsibility of the central
server is allocated to some committee nodes, such as filteringmalicious training nodes and aggregation;

• DFMLF-Efficient: Theproposed frameworkwith communication efficientmethod, inwhich the training of training
nodes and the aggregation of committee nodes are carried out in parallel.

4.3 | Experimental Results and Analysis
4.3.1 | Effectiveness
In this experiment, we do not consider themalicious attacks, and assume that every node is an honest node. In order to
verify the performance in different situations, we constructed four different task settings for Omniglot: 5-way 1-shot,
5-way 2-shot, 10-way 1-shot, 10-way 2-shot; and two different task settings for miniImageNet: 5-way 1-shot, 5-way
2-shot.

From Table 4 and 5, the following observations and conclusions can be obtained:
Theperformanceof thePre-train is theworst, the prediction accuracy of the n-way task is only slightly higher than

the random prediction 1/n . This is because Pre-train does not consider that the tasks on different nodes are different,
thus it cannot learn the commonmeta-knowledge of different tasks.

The Centralized mode ignores the restrictions of data privacy protection and gathers all tasks’ data together. In
conventional federated learning, the Centralized method is often be regarded as the theoretical upper bound. The
accuracies of the Fed-Meta method in tasks 5-way 1-shot, 5-way 2-shot, 10-way 1-shot based on the CNNmodel, the
task 10-way 2-shot based on the MLP model, and the tasks 5-way 1-shot, 5-way 2-shot based on the ResNet18 and
LSTMmodel are about 3% ∼ 8% lower than that of the corresponding Centralized method. While the accuracy of the
Fed-Meta method on the task 10-way 2-shot based on CNN model, and the tasks 5-way 1-shot, 5-way 2-shot, 10-way
1-shot based onMLPmodel is about 2% ∼ 5% higher than that of the corresponding Centralized method. This shows
that although in theory, the federatedmethodwill lose global information comparedwith the Centralizedmethod, the
performance of the Fed-Metamethod is better than the Centralizedmethod in some tasks. That is because themodel
obtained by Fed-Meta has better generalization, which is suitable for new unseen tasks. And the target dimension of
the Centralized method increases sharply, which may classify similar pictures written in different languages into one
category. The experiment result can prove that meta-learning is necessary to deal with this setting.

In Fed-meta, a central server is responsible for aggregating the local model parameter vectors sent by all training
nodes without verifying and filtering them. The accuracies of our framework DFMLF-Random and DFMLF-Efficient
are both higher than that of Fed-meta, especially on the 10-way 2-shot task based on the MLP model, the accuracies
are about 4% higher than Fed-meta. This is because the cross-validation mechanism of our framework can improve
the performance of model training.

Compared with DFMLF-Optimal, DFMLF-Random and DFMLF-Efficient are slightly better based on the CNN
model, which are about 2%higher based on theMLPmodel. This is becauseDFMLF-Optimal leads the system towards
the initial committee nodes, resulting in poor generalization performance.

ComparingDFMLF-RandomandDFMLF-Efficient, we find thatDFMLF-Efficient can achieve similar performance
asDFMLF-Random, andon the taskswithonlyone sample,DFMLF-Efficient is slightly better. This shows that although
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F IGURE 9 The accuracy of the comparisonmethods under different proportions of malicious nodes

DFMLF-Efficient loses more information than DFMLF-Random, the loss is so low that it can be ignored.
In summary, DFMLF-Efficient can effectively deal with few-shot multi-task problems, and the cross-validation

mechanism of our framework can improve the performance of model training. In addition, the random-based commit-
tee election strategy has better generalization than the optimal-based committee election strategy, and the loss of the
communication-efficient method can be ignored.

4.3.2 | Robustness
In this experiment, we consider the setting of malicious attacks. Due to intentional destruction or transmission error,
some training nodes may submit malicious model parameter vectors. If these malicious model parameter vectors are
aggregated into the global model, the performance of the global model will be affected. We set the proportion of mali-
cious nodes to 10%, 20%, 30%, 40%, 50%, andensure that themalicious nodesparticipating in each roundof training are
consistent with the overall proportion. We examine a widely-used attack, Random updates [52], in our threat model.
Whenmalicious nodes submitmodel parameter vectors, Gaussian noise (loc=0, scale=0.5) will be added to the vectors.
The noise distribution is close to the parameters of the normal vectors, which is difficult to distinguish and has certain
concealment. The training setting is the task 5-shot 1-way based on the CNN model. Fig. 9 shows the accuracy of
the comparison methods under different proportions of malicious nodes. The short vertical line at each turning point
represents the standard deviation.

In Fig. 9, the Naive method scores worst. When the proportion of malicious nodes is 10%, the model effect is
severely affected; and when the proportion of malicious nodes exceeds 30%, the effect of the model is the same as
that of the random method. This is because the Naive method directly averages all vectors to generate the global
model parameter vector without identifyingmalicious updates. This shows that themalicious nodes have a disastrous
effect on the global model, and averaging cannot tolerate a single Byzantine worker.

As for theMedianmethod, when the proportion ofmalicious nodes is 40% or less, it is robust tomalicious attacks;
while when the proportion of malicious nodes is up to 50%, the performance of the global model decreases greatly,
indicating that the global model aggregates some malicious vectors. This is because when the number of malicious
nodes increases, theymay colludewith each other tomake themedian deviate from the correct position, and help one
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malicious node to be selected.
Krumselects theaggregatedmodel parameter vectorsbasedon thedistanceof thevectors,whileDFMLF-Efficient

identifies the honest nodes according to the effect of the model parameter vectors. DFMLF-Efficient and Krum can
both achieve stable model performance under different proportions of malicious nodes, which proves the robustness
of the two methods. However, our method DFMLF-Efficient is more interpretable, because there is no direct correla-
tion between the distance of the model parameter vectors and the model performance. In addition, the performance
of DFMLF-Efficient is better than Krum, this is because the framework based on the committee mechanism is more
suitable for meta training, and the cross-validationmechanism can improve the performance of model training. More-
over, in section 3.51, we analyze the computation complexity and point out thatDFMLF-Efficient ismore efficient than
Krum.

4.3.3 | Efficiency
In this experiment, we measure the actual convergence on the task 10-way 2-shot based on the MLP model. As the
same as section 4.3.1, we set the number of training nodes participating in each round to 10, and the number of com-
mittee nodes is 4. For the setup, we simulate 14 nodes, and each node has the same computing power and transmission
capacity. In order to simulate different transmission speeds in different network environments, we set several differ-
ent transmission speeds: 1Mps, 2Mps, and 5Mps. Under each transmission speed, we evaluate the methods using
wall-clock time, which includes computation time and communication time. Fig. 10 shows the test accuracy over wall-
clock time for different transmission speeds.

From Fig. 10, we can see that although our framework DFMLF and DFMLF-Efficient product additional computa-
tion and communication overhead compared withMLP, their computation overhead is lower than other secure aggre-
gation method Fed-Krum, and their communication overhead is lower than other decentralized method BrainTorrent.
The time required for our framework is not much different from that of Fed-Meta. Moreover, with the increase of
transmission speed, the advantage of our method DFMLF-Efficient becomes greater. Because DFMLF-Efficient can
synchronize training and aggregation, and reduce the waiting time of computation.

Through experimental results and analysis, it can be proved that DFMLF-Efficient can effectively deal with few-
shot multi-task problems, and improve the performance of model training. In addition, it can effectively ensure the
robustness of model training in the setting of malicious attacks. Moreover, it is more efficient than other secure ag-
gregation methods and other decentralized methods. Compared with the centralized training, DFMLF-Efficient not
only considers the attack of malicious nodes or server, but also considers the privacy protection of original data while
ensuring the training effect, thus it behavesmore applicable in real settings.

4.4 | Hyperparameter Analysis
There are two main hyperparameters that affect the effect of DFMLF: the number of nodes participating in training
in each round Nt r ai n , and the number of committee nodes Ncomm . By setting a different number of committee nodes
and training nodes, we explore the performance of DFMLF. For simplicity, we assume that the number of selected
aggregated nodes N is the same as the number of the committee nodes Ncomm .

The number of committee nodes Ncomm should be less than the number of training nodes Nt r ai n . If Nt r ai n <=
Ncomm , all the committee nodes score each training node, resulting in large score differences. It is difficult to select
the appropriate training node for aggregation. WhenNt r ai n > Ncomm , the training nodeswith better performancewill
be selected for aggregation, this can not only improve the convergence speed of federated learning, but also improve
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F IGURE 10 The performance over the wall-clock time. Each row shows a different transmission speed. The left
column shows convergence via test accuracy vs. wallclock training time; The right column shows the proportion of
computation time and communication time.

the performance of the model. However, the number of Ncomm should be carefully weighed. On the one hand, fewer
committee nodes can reduce the workload in the verification phase, as the model parameter vectors of all training
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F IGURE 11 The impact of the number of training nodes and committee nodes.

nodeswill be submitted to all the committee nodes for verification. On the other hand, an excessively smallNcomm not
only increases the risk of being attacked by malicious nodes, but also leads to too little data in the verification set and
insufficient representation of the committee nodes.

In this experiment, the training setting is set to 5-shot, 1-way and the basic model uses the CNNmodel as Section
4.3.2. In Fig. 11, we show the average accuracy andmark the standard deviation of each result.

We see that when the number of training nodes Nt r ai n is 5, the best accuracy is achieved when the proportion of
committee nodes Ncomm is 30%; when Nt r ai n = 10, the best Ncomm is 40%; and when Nt r ai n = 20, the best Ncomm is
50%. This shows that when Nt r ai n is relatively small, Ncomm should also be set smaller, as a larger number of Ncomm
meansmore scores of the training nodes, and it is difficult to select appropriate training nodes to aggregate due to the
greate difference in scores; and when Nt r ai n is relatively large, Ncomm also be set larger, as the cross-validation of the
committee nodes can improve the performance of model training.

5 | CONCLUSION

Federated learning is increasingly attractive as it provides globally model training while ensuring privacy. To solve
the few-shot multi-task problem in a distributed setting, we propose that the devices take the rapid adaptation as
the objective and train an excellent initial value of model parameters to deal with different tasks. Considering the
malicious attacks of the training nodes and the central server, this paper proposes a server-less training framework.
The server-less design can avoid the privacy leakage risk brought by the central server, while the cross-validation and
secure aggregation mechanism reduce the impact of malicious devices and improve security. In the experiment, we
construct several different task settings using a real-world dataset, and demonstrate the effectiveness, robustness,
and efficiency of our framework by comparing it with other frameworks and secure aggregationmethods.

However, there are still some shortcomings in this paper. For example, when electing committee nodes, the hard-
ware conditions of the nodes, such as computing power and network bandwidth, are not considered. In the future,
we are going to further this study in two aspects. Firstly, we will consider more influencing factors and study election
strategies in different scenarios. Secondly, we will pay attention to the improvement of transmission efficiency, the
optimization of storage efficiency.
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